Basic laws
limx→ac=c where c is a constantlimx→ax=a
Addition law
limx→a(f(x)+g(x))=limx→af(x)+limx→ag(x)
Provided limx→af(x) and limx→ag(x) exist.
Subtraction law
limx→a(f(x)−g(x))=limx→af(x)−limx→ag(x)
Provided limx→af(x) and limx→ag(x) exist.
Multiplication law
limx→a(f(x)⋅g(x))=limx→af(x)⋅limx→ag(x)
Provided limx→af(x) and limx→ag(x) exist.
Division law
limx→af(x)g(x)=limx→af(x)limx→ag(x)
Provided limx→af(x) and limx→ag(x) exist and limx→ag(x)≠0
Power law
limx→a(f(x))n=(limx→af(x)))n
Provided limx→af(x) exists and n is an integer.
l'Hôpital's Rule
limf(x)g(x)=limf′(x)g′(x)If limx→af(x) and limx→ag(x)=0 or ±∞
0 comments:
Post a Comment